Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the defect and stability of differential expansion (1504.07146v3)

Published 27 Apr 2015 in hep-th and math.GT

Abstract: Empirical analysis of many colored knot polynomials, made possible by recent computational advances in Chern-Simons theory, reveals their stability: for any given negative N and any given knot the set of coefficients of the polynomial in r-th symmetric representation does not change with r, if it is large enough. This fact reflects the non-trivial and previously unknown properties of the differential expansion, and it turns out that from this point of view there are universality classes of knots, characterized by a single integer, which we call defect, and which is in fact related to the power of Alexander polynomial.

Summary

We haven't generated a summary for this paper yet.