The precise time-dependent solution of the Fokker-Planck equation with anomalous diffusion
Abstract: We study the time behavior of the Fokker-Planck equation in Zwanzig rule (the backward-Ito rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation-dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker-Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.