Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Angle Preserving Mappings (1504.06293v1)

Published 23 Apr 2015 in math.FA and math.OA

Abstract: In this paper, we give some characterizations of orthogonality preserving mappings between inner product spaces. Furthermore, we study the linear mappings that preserve some angles. One of our main results states that if $\mathcal{X}, \mathcal{Y}$ are real inner product spaces and $\theta\in(0, \pi)$, then an injective nonzero linear mapping $T:\mathcal{X}\longrightarrow \mathcal{Y}$ is a similarity whenever (i) $x\underset{\theta}{\angle} y\, \Leftrightarrow \,Tx\underset{\theta}{\angle} Ty$ for all $x, y\in \mathcal{X}$; (ii) for all $x, y\in \mathcal{X}$, $|x|=|y|$ and $x\underset{\theta}{\angle} y$ ensure that $|Tx|=|Ty|$. We also investigate orthogonality preserving mappings in the setting of inner product $C{*}$-modules. Another result shows that if $\mathbb{K}(\mathscr{H})\subseteq\mathscr{A}\subseteq\mathbb{B}(\mathscr{H})$ is a $C{*}$-algebra and $T\,:\mathscr{E}\longrightarrow \mathscr{F}$ is an $\mathscr{A}$-linear mapping between inner product $\mathscr{A}$-modules, then $T$ is orthogonality preserving if and only if $|x|\leq|y|\, \Rightarrow \,|Tx|\leq|Ty|$ for all $x, y\in \mathscr{E}$.

Summary

We haven't generated a summary for this paper yet.