Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentially Private $k$-Means Clustering (1504.05998v1)

Published 22 Apr 2015 in cs.CR

Abstract: There are two broad approaches for differentially private data analysis. The interactive approach aims at developing customized differentially private algorithms for various data mining tasks. The non-interactive approach aims at developing differentially private algorithms that can output a synopsis of the input dataset, which can then be used to support various data mining tasks. In this paper we study the tradeoff of interactive vs. non-interactive approaches and propose a hybrid approach that combines interactive and non-interactive, using $k$-means clustering as an example. In the hybrid approach to differentially private $k$-means clustering, one first uses a non-interactive mechanism to publish a synopsis of the input dataset, then applies the standard $k$-means clustering algorithm to learn $k$ cluster centroids, and finally uses an interactive approach to further improve these cluster centroids. We analyze the error behavior of both non-interactive and interactive approaches and use such analysis to decide how to allocate privacy budget between the non-interactive step and the interactive step. Results from extensive experiments support our analysis and demonstrate the effectiveness of our approach.

Citations (140)

Summary

We haven't generated a summary for this paper yet.