Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A convergent explicit finite difference scheme for a mechanical model for tumor growth (1504.05982v1)

Published 22 Apr 2015 in math.NA and math.AP

Abstract: Mechanical models for tumor growth have been used extensively in recent years for the analysis of medical observations and for the prediction of cancer evolution based on imaging analysis. This work deals with the numerical approximation of a mechanical model for tumor growth and the analysis of its dynamics. The system under investigation is given by a multi-phase flow model: The densities of the different cells are governed by a transport equation for the evolution of tumor cells, whereas the velocity field is given by a Brinkman regularization of the classical Darcy's law. An efficient finite difference scheme is proposed and shown to converge to a weak solution of the system. Our approach relies on convergence and compactness arguments in the spirit of Lions (Mathematical Topics in Fluid Dynamics, 1998).

Summary

We haven't generated a summary for this paper yet.