Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New Perspectives on Multiple Source Localization in Wireless Sensor Networks (1504.05837v1)

Published 22 Apr 2015 in cs.IT, math.IT, and stat.AP

Abstract: In this paper we address the challenging problem of multiple source localization in Wireless Sensor Networks (WSN). We develop an efficient statistical algorithm, based on the novel application of Sequential Monte Carlo (SMC) sampler methodology, that is able to deal with an unknown number of sources given quantized data obtained at the fusion center from different sensors with imperfect wireless channels. We also derive the Posterior Cram\'er-Rao Bound (PCRB) of the source location estimate. The PCRB is used to analyze the accuracy of the proposed SMC sampler algorithm and the impact that quantization has on the accuracy of location estimates of the sources. Extensive experiments show that the benefits of the proposed scheme in terms of the accuracy of the estimation method that are required for model selection (i.e., the number of sources) and the estimation of the source characteristics compared to the classical importance sampling method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.