Papers
Topics
Authors
Recent
2000 character limit reached

On the double zeros of a partial theta function

Published 22 Apr 2015 in math.CA | (1504.05786v1)

Abstract: The series $\theta (q,x):=\sum _{j=0}{\infty}q{j(j+1)/2}xj$ converges for $q\in [0,1)$, $x\in \mathbb{R}$, and defines a {\em partial theta function}. For any fixed $q\in (0,1)$ it has infinitely many negative zeros. For $q$ taking one of the {\em spectral} values $\tilde{q}_1$, $\tilde{q}_2$, $\ldots$ (where $0.3092493386\ldots =\tilde{q}_1<\tilde{q}_2<\cdots <1$, $\lim _{j\rightarrow \infty}\tilde{q}_j=1$) the function $\theta (q,.)$ has a double zero $y_j$ which is the rightmost of its real zeros (the rest of them being simple). For $q\neq \tilde{q}_j$ the partial theta function has no multiple real zeros. We prove that $\tilde{q}_j=1-\pi /2j+(\log j)/8j2+O(1/j2)$ and $y_j=-e{\pi}e{-(\log j)/4j+O(1/j)}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.