Papers
Topics
Authors
Recent
Search
2000 character limit reached

Twists and braids for general 3-fold flops

Published 21 Apr 2015 in math.AG and math.RT | (1504.05320v2)

Abstract: Given a quasi-projective 3-fold X with only Gorenstein terminal singularities, we prove that the flop functors beginning at X satisfy higher degree braid relations, with the combinatorics controlled by a real hyperplane arrangement H. This leads to a general theory, incorporating known special cases with degree 3 braid relations, in which we show that higher degree relations can occur even for two smooth rational curves meeting at a point. This theory yields an action of the fundamental group of the complexified complement of H on the derived category of X, for any such 3-fold that admits individually floppable curves. We also construct such an action in the more general case where individual curves may flop analytically, but not algebraically, and furthermore we lift the action to a form of affine pure braid group under the additional assumption that X is Q-factorial. Along the way, we produce two new types of derived autoequivalences. One uses commutative deformations of the scheme-theoretic fibre of a flopping contraction, and the other uses noncommutative deformations of the fibre with reduced scheme structure, generalising constructions of Toda and the authors which considered only the case when the flopping locus is irreducible. For type A flops of irreducible curves, we show that the two autoequivalences are related, but that in other cases they are very different, with the noncommutative twist being linked to birational geometry via the Bridgeland-Chen flop-flop functor.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.