On the Free Fractional Wishart Process
Abstract: We investigate the process of eigenvalues of a fractional Wishart process defined as N=B*B, where B is a matrix fractional Brownian motion recently studied by Nualart and P\'erez-Abreu. Using stochastic calculus with respect to the Young integral we show that the eigenvalues do not collide at any time with probability one. When the matrix process B has entries given by independent fractional Brownian motions with Hurst parameter $H\in(1/2,1)$ we derive a stochastic differential equation in a Malliavin calculus sense for the eigenvalues of the corresponding fractional Wishart process. Finally a functional limit theorem for the empirical measure-valued process of eigenvalues of a fractional Wishart process is obtained. The limit is characterized and referred to as the free fractional Wishart process which constitutes the family of fractional dilations of the free Poisson distribution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.