Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of Brinkman flows in heterogeneous dynamic media (1504.04845v1)

Published 19 Apr 2015 in math.AP and math.PR

Abstract: In this paper, we study Brinkman's equations with microscale properties that are highly heterogeneous in space and time. The time variations are controlled by a stochastic particle dynamics described by an SDE. The particle dynamics can be thought as particle deposition that often occurs in filter problems. Our main results include the derivation of macroscale equations and showing that the macroscale equations are deterministic. The latter is important for our (also many other) applications as it greatly simplifies the macroscale equations. We use the asymptotic properties of the SDE and the periodicity of the Brinkman's coefficient in the space variable to prove the convergence result. The SDE has a unique invariant measure that is ergodic and strongly mixing. The macro scale equations are derived through an averaging principle of the slow motion (fluid velocity) with respect to the fast motion (particle dynamics) and also by averaging the Brinkman's coefficient with respect to the space variable. Our results can be extended to more general nonlinear diffusion equations with heterogeneous coefficients.

Summary

We haven't generated a summary for this paper yet.