Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing the scalability and load balancing of the parallel selected inversion algorithm via tree-based asynchronous communication

Published 18 Apr 2015 in cs.DC and cs.MS | (1504.04714v1)

Abstract: We develop a method for improving the parallel scalability of the recently developed parallel selected inversion algorithm [Jacquelin, Lin and Yang 2014], named PSelInv, on massively parallel distributed memory machines. In the PSelInv method, we compute selected elements of the inverse of a sparse matrix A that can be decomposed as A = LU, where L is lower triangular and U is upper triangular. Updating these selected elements of A-1 requires restricted collective communications among a subset of processors within each column or row communication group created by a block cyclic distribution of L and U. We describe how this type of restricted collective communication can be implemented by using asynchronous point-to-point MPI communication functions combined with a binary tree based data propagation scheme. Because multiple restricted collective communications may take place at the same time in the parallel selected inversion algorithm, we need to use a heuristic to prevent processors participating in multiple collective communications from receiving too many messages. This heuristic allows us to reduce communication load imbalance and improve the overall scalability of the selected inversion algorithm. For instance, when 6,400 processors are used, we observe over 5x speedup for test matrices. It also mitigates the performance variability introduced by an inhomogeneous network topology.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.