Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudorandomness for Read-Once, Constant-Depth Circuits (1504.04675v2)

Published 18 Apr 2015 in cs.CC

Abstract: For Boolean functions computed by read-once, depth-$D$ circuits with unbounded fan-in over the de Morgan basis, we present an explicit pseudorandom generator with seed length $\tilde{O}(\log{D+1} n)$. The previous best seed length known for this model was $\tilde{O}(\log{D+4} n)$, obtained by Trevisan and Xue (CCC 13) for all of $AC^0$ (not just read-once). Our work makes use of Fourier analytic techniques for pseudorandomness introduced by Reingold, Steinke, and Vadhan (RANDOM13) to show that the generator of Gopalan et al. (FOCS `12) fools read-once $AC0$. To this end, we prove a new Fourier growth bound for read-once circuits, namely that for every $F: {0,1}n\to{0,1}$ computed by a read-once, depth-$D$ circuit, \begin{equation*}\sum_{s\subseteq[n], |s|=k}|\hat{F}[s]|\le O(\log{D-1}n)k,\end{equation*} where $\hat{F}$ denotes the Fourier transform of $F$ over $\mathbb{Z}n_2$.

Citations (10)

Summary

We haven't generated a summary for this paper yet.