Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground States for a nonlinear Schrödinger system with sublinear coupling terms (1504.04655v1)

Published 17 Apr 2015 in math.AP

Abstract: We study the existence of ground states for the coupled Schr\"odinger system \begin{equation} \left{\begin{array}{lll} \displaystyle -\Delta u_i+\lambda_i u_i= \mu_i |u_i|{2q-2}u_i+\sum_{j\neq i}b_{ij} |u_j|q|u_i|{q-2}u_i \ u_i\in H1(\mathbb{R}n), \quad i=1,\ldots, d, \end{array}\right. \end{equation} $n\geq 1$, for $\lambda_i,\mu_i >0$, $b_{ij}=b_{ji}>0$ (the so-called "symmetric attractive case") and $1<q<n/(n-2)+$. We prove the existence of a nonnegative ground state $(u_1,\ldots,u_d^)$ with $u_i*$ radially decreasing. Moreover we show that, for $1<q<2$, such ground states are positive in all dimensions and for all values of the parameters.

Summary

We haven't generated a summary for this paper yet.