Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Faster FPTAS for the Unbounded Knapsack Problem (1504.04650v2)

Published 17 Apr 2015 in cs.DS

Abstract: The Unbounded Knapsack Problem (UKP) is a well-known variant of the famous 0-1 Knapsack Problem (0-1 KP). In contrast to 0-1 KP, an arbitrary number of copies of every item can be taken in UKP. Since UKP is NP-hard, fully polynomial time approximation schemes (FPTAS) are of great interest. Such algorithms find a solution arbitrarily close to the optimum $\mathrm{OPT}(I)$, i.e. of value at least $(1-\varepsilon) \mathrm{OPT}(I)$ for $\varepsilon > 0$, and have a running time polynomial in the input length and $\frac{1}{\varepsilon}$. For over thirty years, the best FPTAS was due to Lawler with a running time in $O(n + \frac{1}{\varepsilon3})$ and a space complexity in $O(n + \frac{1}{\varepsilon2})$, where $n$ is the number of knapsack items. We present an improved FPTAS with a running time in $O(n + \frac{1}{\varepsilon2} \log3 \frac{1}{\varepsilon})$ and a space bound in $O(n + \frac{1}{\varepsilon} \log2 \frac{1}{\varepsilon})$. This directly improves the running time of the fastest known approximation schemes for Bin Packing and Strip Packing, which have to approximately solve UKP instances as subproblems.

Citations (24)

Summary

We haven't generated a summary for this paper yet.