Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Perfectly Secure Index Coding (1504.04494v2)

Published 17 Apr 2015 in cs.IT and math.IT

Abstract: In this paper, we investigate the index coding problem in the presence of an eavesdropper. Messages are to be sent from one transmitter to a number of legitimate receivers who have side information about the messages, and share a set of secret keys with the transmitter. We assume perfect secrecy, meaning that the eavesdropper should not be able to retrieve any information about the message set. We study the minimum key lengths for zero-error and perfectly secure index coding problem. On one hand, this problem is a generalization of the index coding problem (and thus a difficult one). On the other hand, it is a generalization of the Shannon's cipher system. We show that a generalization of Shannon's one-time pad strategy is optimal up to a multiplicative constant, meaning that it obtains the entire boundary of the cone formed by looking at the secure rate region from the origin. Finally, we consider relaxation of the perfect secrecy and zero-error constraints to weak secrecy and asymptotically vanishing probability of error, and provide a secure version of the result, obtained by Langberg and Effros, on the equivalence of zero-error and $\epsilon$-error regions in the conventional index coding problem.

Citations (23)

Summary

We haven't generated a summary for this paper yet.