Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graded identities of block-triangular matrices (1504.04238v2)

Published 16 Apr 2015 in math.RA

Abstract: Let $F$ be an infinite field and $UT(d_1,\dots, d_n)$ be the algebra of upper block-triangular matrices over $F$. In this paper we describe a basis for the $G$-graded polynomial identities of $UT(d_1,\dots, d_n)$, with an elementary grading induced by an $n$-tuple of elements of a group $G$ such that the neutral component corresponds to the diagonal of $UT(d_1,\dots,d_n)$. In particular, we prove that the monomial identities of such algebra follow from the ones of degree up to $2n-1$. Our results generalize for infinite fields of arbitrary characteristic, previous results in the literature which were obtained for fields of characteristic zero and for particular $G$-gradings. In the characteristic zero case we also generalize results for the algebra $UT(d_1,\dots, d_n)\otimes C$ with a tensor product grading, where $C$ is a color commutative algebra generating the variety of all color commutative algebras.

Summary

We haven't generated a summary for this paper yet.