Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Forecasting High-Dimensional Realized Volatility Matrices Using A Factor Model (1504.03454v1)

Published 14 Apr 2015 in stat.AP and stat.ME

Abstract: Modeling and forecasting covariance matrices of asset returns play a crucial role in finance. The availability of high frequency intraday data enables the modeling of the realized covariance matrix directly. However, most models in the literature suffer from the curse of dimensionality. To solve the problem, we propose a factor model with a diagonal CAW model for the factor realized covariance matrices. Asymptotic theory is derived for the estimated parameters. In an extensive empirical analysis, we find that the number of parameters can be reduced significantly. Furthermore, the proposed model maintains a comparable performance with a benchmark vector autoregressive model.

Summary

We haven't generated a summary for this paper yet.