On Elliptic Systems involving critical Hardy-Sobolev exponents (Part II) (1504.02939v2)
Abstract: This paper is the second part of a work devoted to the study of elliptic systems involving multiple Hardy-Sobolev critical exponents: $$\begin{cases} -\Delta u-\lambda \frac{|u|{2*(s_1)-2}u}{|x|{s_1}}=\kappa\alpha \frac{1}{|x|{s_2}}|u|{\alpha-2}u|v|\beta\quad &\hbox{in}\;\Omega,\ -\Delta v-\mu \frac{|v|{2*(s_1)-2}v}{|x|{s_1}}=\kappa\beta \frac{1}{|x|{s_2}}|u|{\alpha}|v|{\beta-2}v\quad &\hbox{in}\;\Omega,\ \kappa>0,(u,v)\in \mathscr{D}:=D_{0}{1,2}(\Omega)\times D_{0}{1,2}(\Omega), \end{cases}$$ where $s_1\neq s_2\in (0,2), \alpha>1,\beta>1, \lambda>0,\mu>0,\kappa>0, \alpha+\beta=2*(s_2)$. Here, $2*(s):=\frac{2(N-s)}{N-2}$ is the critical Hardy-Sobolev exponent. When $\Omega$ is a cone (especially $\Omega=\R_+N$ or $\Omega=\RN$), we study the existence of positive ground state solution.