Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classifying Unrooted Gaussian Trees under Privacy Constraints (1504.02530v2)

Published 10 Apr 2015 in cs.IT and math.IT

Abstract: In this work, our objective is to find out how topological and algebraic properties of unrooted Gaussian tree models determine their security robustness, which is measured by our proposed max-min information (MaMI) metric. Such metric quantifies the amount of common randomness extractable through public discussion between two legitimate nodes under an eavesdropper attack. We show some general topological properties that the desired max-min solutions shall satisfy. Under such properties, we develop conditions under which comparable trees are put together to form partially ordered sets (posets). Each poset contains the most favorable structure as the poset leader, and the least favorable structure. Then, we compute the Tutte-like polynomial for each tree in a poset in order to assign a polynomial to any tree in a poset. Moreover, we propose a novel method, based on restricted integer partitions, to effectively enumerate all poset leaders. The results not only help us understand the security strength of different Gaussian trees, which is critical when we evaluate the information leakage issues for various jointly Gaussian distributed measurements in networks, but also provide us both an algebraic and a topological perspective in grasping some fundamental properties of such models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.