Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mining and discovering biographical information in Difangzhi with a language-model-based approach (1504.02148v1)

Published 8 Apr 2015 in cs.CL, cs.CY, and cs.DL

Abstract: We present results of expanding the contents of the China Biographical Database by text mining historical local gazetteers, difangzhi. The goal of the database is to see how people are connected together, through kinship, social connections, and the places and offices in which they served. The gazetteers are the single most important collection of names and offices covering the Song through Qing periods. Although we begin with local officials we shall eventually include lists of local examination candidates, people from the locality who served in government, and notable local figures with biographies. The more data we collect the more connections emerge. The value of doing systematic text mining work is that we can identify relevant connections that are either directly informative or can become useful without deep historical research. Academia Sinica is developing a name database for officials in the central governments of the Ming and Qing dynasties.

Citations (4)

Summary

We haven't generated a summary for this paper yet.