Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Two-Stream CNN for Video Classification (1504.01920v1)

Published 8 Apr 2015 in cs.CV

Abstract: Videos contain very rich semantic information. Traditional hand-crafted features are known to be inadequate in analyzing complex video semantics. Inspired by the huge success of the deep learning methods in analyzing image, audio and text data, significant efforts are recently being devoted to the design of deep nets for video analytics. Among the many practical needs, classifying videos (or video clips) based on their major semantic categories (e.g., "skiing") is useful in many applications. In this paper, we conduct an in-depth study to investigate important implementation options that may affect the performance of deep nets on video classification. Our evaluations are conducted on top of a recent two-stream convolutional neural network (CNN) pipeline, which uses both static frames and motion optical flows, and has demonstrated competitive performance against the state-of-the-art methods. In order to gain insights and to arrive at a practical guideline, many important options are studied, including network architectures, model fusion, learning parameters and the final prediction methods. Based on the evaluations, very competitive results are attained on two popular video classification benchmarks. We hope that the discussions and conclusions from this work can help researchers in related fields to quickly set up a good basis for further investigations along this very promising direction.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Hao Ye (51 papers)
  2. Zuxuan Wu (144 papers)
  3. Rui-Wei Zhao (7 papers)
  4. Xi Wang (275 papers)
  5. Yu-Gang Jiang (223 papers)
  6. Xiangyang Xue (169 papers)
Citations (117)

Summary

We haven't generated a summary for this paper yet.