Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numbers with countable expansions in base of generalized golden ratios (1504.01704v1)

Published 5 Apr 2015 in math.NT and math.DS

Abstract: Sidorov and Vershik showed that in base $G=\frac{\sqrt{5}+1}{2}$ and with the digits $0,1$ the numbers $x=nG ~(\text {mod} 1)$ have $\aleph_{0}$ expansions for any $n\in\mathbb{Z}$, while the other elements of $(0, \frac{1}{G-1})$ have $2{\aleph_{0}}$ expansions. In this paper, we generalize this result to the generalized golden ratio base $\beta=\mathcal{G}(m)$. With the digit-set ${0,1,\cdots, m}$, if $m=2k+1$, $\mathcal{G}(m)=\frac{k+1+\sqrt{k{2}+6k+5}}{2}$, the numbers $x=\frac{p\beta+q}{(k+1){n}}\in(0, \frac{m}{\beta-1})$ (where $n, p, q\in\mathbb{Z}$) have $\aleph_{0}$ expansions, while the other elements of $(0, \frac{m}{\beta-1})$ have $2{\aleph_{0}}$ expansions; if $m=2k$, $\mathcal{G}(m)=k+1$, the numbers with countably many expansions are $\frac{p}{(k+1){n}}\in(0, 2) ~(n, p\in\mathbb{N}\cup{0})$. This solves an open question by Baker.

Summary

We haven't generated a summary for this paper yet.