Papers
Topics
Authors
Recent
2000 character limit reached

Benchmarking the cost of thread divergence in CUDA

Published 7 Apr 2015 in cs.DC | (1504.01650v1)

Abstract: All modern processors include a set of vector instructions. While this gives a tremendous boost to the performance, it requires a vectorized code that can take advantage of such instructions. As an ideal vectorization is hard to achieve in practice, one has to decide when different instructions may be applied to different elements of the vector operand. This is especially important in implicit vectorization as in NVIDIA CUDA Single Instruction Multiple Threads (SIMT) model, where the vectorization details are hidden from the programmer. In order to assess the costs incurred by incompletely vectorized code, we have developed a micro-benchmark that measures the characteristics of the CUDA thread divergence model on different architectures focusing on the loops performance.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.