Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dualization in Lattices Given by Ordered Sets of Irreducibles (1504.01145v2)

Published 5 Apr 2015 in cs.LO, cs.CC, and cs.DM

Abstract: Dualization of a monotone Boolean function on a finite lattice can be represented by transforming the set of its minimal 1 to the set of its maximal 0 values. In this paper we consider finite lattices given by ordered sets of their meet and join irreducibles (i.e., as a concept lattice of a formal context). We show that in this case dualization is equivalent to the enumeration of so-called minimal hypotheses. In contrast to usual dualization setting, where a lattice is given by the ordered set of its elements, dualization in this case is shown to be impossible in output polynomial time unless P = NP. However, if the lattice is distributive, dualization is shown to be possible in subexponential time.

Citations (12)

Summary

We haven't generated a summary for this paper yet.