Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modifying the Yamaguchi Four-Component Decomposition Scattering Powers Using a Stochastic Distance (1504.01000v1)

Published 4 Apr 2015 in cs.IT and math.IT

Abstract: Model-based decompositions have gained considerable attention after the initial work of Freeman and Durden. This decomposition which assumes the target to be reflection symmetric was later relaxed in the Yamaguchi et al. decomposition with the addition of the helix parameter. Since then many decomposition have been proposed where either the scattering model was modified to fit the data or the coherency matrix representing the second order statistics of the full polarimetric data is rotated to fit the scattering model. In this paper we propose to modify the Yamaguchi four-component decomposition (Y4O) scattering powers using the concept of statistical information theory for matrices. In order to achieve this modification we propose a method to estimate the polarization orientation angle (OA) from full-polarimetric SAR images using the Hellinger distance. In this method, the OA is estimated by maximizing the Hellinger distance between the un-rotated and the rotated $T_{33}$ and the $T_{22}$ components of the coherency matrix $\mathbf{[T]}$. Then, the powers of the Yamaguchi four-component model-based decomposition (Y4O) are modified using the maximum relative stochastic distance between the $T_{33}$ and the $T_{22}$ components of the coherency matrix at the estimated OA. The results show that the overall double-bounce powers over rotated urban areas have significantly improved with the reduction of volume powers. The percentage of pixels with negative powers have also decreased from the Y4O decomposition. The proposed method is both qualitatively and quantitatively compared with the results obtained from the Y4O and the Y4R decompositions for a Radarsat-2 C-band San-Francisco dataset and an UAVSAR L-band Hayward dataset.

Citations (57)

Summary

We haven't generated a summary for this paper yet.