Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The matching problem has no small symmetric SDP (1504.00703v5)

Published 2 Apr 2015 in cs.CC

Abstract: Yannakakis showed that the matching problem does not have a small symmetric linear program. Rothvo{\ss} recently proved that any, not necessarily symmetric, linear program also has exponential size. It is natural to ask whether the matching problem can be expressed compactly in a framework such as semidefinite programming (SDP) that is more powerful than linear programming but still allows efficient optimization. We answer this question negatively for symmetric SDPs: any symmetric SDP for the matching problem has exponential size. We also show that an O(k)-round Lasserre SDP relaxation for the metric traveling salesperson problem yields at least as good an approximation as any symmetric SDP relaxation of size $nk$. The key technical ingredient underlying both these results is an upper bound on the degree needed to derive polynomial identities that hold over the space of matchings or traveling salesperson tours.

Citations (12)

Summary

We haven't generated a summary for this paper yet.