Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blow-up behaviour of a fractional Adams-Moser-Trudinger type inequality in odd dimension (1504.00254v1)

Published 1 Apr 2015 in math.AP

Abstract: Given a smoothly bounded domain $\Omega\Subset\mathbb{R}n$ with $n\ge 1$ odd, we study the blow-up of bounded sequences $(u_k)\subset H\frac{n}{2}_{00}(\Omega)$ of solutions to the non-local equation $$(-\Delta)\frac n2 u_k=\lambda_k u_ke{\frac n2 u_k2}\quad \text{in }\Omega,$$ where $\lambda_k\to\lambda_\infty \in [0,\infty)$, and $H{\frac n2}{00}(\Omega)$ denotes the Lions-Magenes spaces of functions $u\in L2(\mathbb{R}n)$ which are supported in $\Omega$ and with $(-\Delta)\frac{n}{4}u\in L2(\mathbb{R}n)$. Extending previous works of Druet, Robert-Struwe and the second author, we show that if the sequence $(u_k)$ is not bounded in $L\infty(\Omega)$, a suitably rescaled subsequence $\eta_k$ converges to the function $\eta_0(x)=\log\left(\frac{2}{1+|x|2}\right)$, which solves the prescribed non-local $Q$-curvature equation $$(-\Delta)\frac n2 \eta =(n-1)!e{n\eta}\quad \text{in }\mathbb{R}n$$ recently studied by Da Lio-Martinazzi-Rivi`ere when $n=1$, Jin-Maalaoui-Martinazzi-Xiong when $n=3$, and Hyder when $n\ge 5$ is odd. We infer that blow-up can occur only if $\Lambda:=\limsup{k\to \infty}|(-\Delta)\frac n4 u_k|_{L2}2\ge \Lambda_1:= (n-1)!|Sn|$.

Summary

We haven't generated a summary for this paper yet.