Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditioning in Probabilistic Programming (1504.00198v1)

Published 1 Apr 2015 in cs.PL

Abstract: We investigate the semantic intricacies of conditioning, a main feature in probabilistic programming. We provide a weakest (liberal) pre-condition (w(l)p) semantics for the elementary probabilistic programming language pGCL extended with conditioning. We prove that quantitative weakest (liberal) pre-conditions coincide with conditional (liberal) expected rewards in Markov chains and show that semantically conditioning is a truly conservative extension. We present two program transformations which entirely eliminate conditioning from any program and prove their correctness using the w(l)p-semantics. Finally, we show how the w(l)p-semantics can be used to determine conditional probabilities in a parametric anonymity protocol and show that an inductive w(l)p-semantics for conditioning in non-deterministic probabilistic programs cannot exist.

Citations (68)

Summary

We haven't generated a summary for this paper yet.