Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The nonassociative algebras used to build fast-decodable space-time block codes (1504.00182v2)

Published 1 Apr 2015 in cs.IT and math.IT

Abstract: Let $K/F$ and $K/L$ be two cyclic Galois field extensions and $D=(K/F,\sigma,c)$ a cyclic algebra. Given an invertible element $d\in D$, we present three families of unital nonassociative algebras over $L\cap F$ defined on the direct sum of $n$ copies of $D$. Two of these families appear either explicitly or implicitly in the designs of fast-decodable space-time block codes in papers by Srinath, Rajan, Markin, Oggier, and the authors. We present conditions for the algebras to be division and propose a construction for fully diverse fast decodable space-time block codes of rate-$m$ for $nm$ transmit and $m$ receive antennas. We present a DMT-optimal rate-3 code for 6 transmit and 3 receive antennas which is fast-decodable, with ML-decoding complexity at most $\mathcal{O}(M{15})$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.