Papers
Topics
Authors
Recent
2000 character limit reached

Two Timescale Stochastic Approximation with Controlled Markov noise and Off-policy temporal difference learning

Published 31 Mar 2015 in math.DS, cs.AI, and stat.ML | (1503.09105v14)

Abstract: We present for the first time an asymptotic convergence analysis of two time-scale stochastic approximation driven by `controlled' Markov noise. In particular, both the faster and slower recursions have non-additive controlled Markov noise components in addition to martingale difference noise. We analyze the asymptotic behavior of our framework by relating it to limiting differential inclusions in both time-scales that are defined in terms of the ergodic occupation measures associated with the controlled Markov processes. Finally, we present a solution to the off-policy convergence problem for temporal difference learning with linear function approximation, using our results.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.