Papers
Topics
Authors
Recent
2000 character limit reached

Remarks about Besicovitch covering property in Carnot groups of step 3 and higher

Published 31 Mar 2015 in math.MG | (1503.09034v1)

Abstract: We prove that the Besicovitch Covering Property (BCP) does not hold for some classes of homogeneous quasi-distances on Carnot groups of step 3 and higher. As a special case we get that, in Carnot groups of step 3 and higher, BCP is not satisfied for those homogeneous distances whose unit ball centered at the origin coincides with a Euclidean ball centered at the origin. This result comes in constrast with the case of the Heisenberg groups where such distances satisfy BCP.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.