Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting Performance of Channel Assignments in Wireless Mesh Networks through Statistical Interference Estimation (1503.08687v3)

Published 30 Mar 2015 in cs.NI

Abstract: Wireless Mesh Network (WMN) deployments are poised to reduce the reliance on wired infrastructure especially with the advent of the multi-radio multi-channel (MRMC) WMN architecture. But the benefits that MRMC WMNs offer viz., augmented network capacity, uninterrupted connectivity and reduced latency, are depreciated by the detrimental effect of prevalent interference. Interference mitigation is thus a prime objective in WMN deployments. It is often accomplished through prudent channel allocation (CA) schemes which minimize the adverse impact of interference and enhance the network performance. However, a multitude of CA schemes have been proposed in research literature and absence of a CA performance prediction metric, which could aid in the selection of an efficient CA scheme for a given WMN, is often felt. In this work, we offer a fresh characterization of the interference endemic in wireless networks. We then propose a reliable CA performance prediction metric, which employs a statistical interference estimation approach. We carry out a rigorous quantitative assessment of the proposed metric by validating its CA performance predictions with experimental results, recorded from extensive simulations run on an ns-3 802.11g environment.

Citations (15)

Summary

We haven't generated a summary for this paper yet.