Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 96 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 434 tok/s Pro
Kimi K2 198 tok/s Pro
2000 character limit reached

New class of distortion risk measures and their tail asymptotics with emphasis on VaR (1503.08586v2)

Published 30 Mar 2015 in q-fin.RM

Abstract: Distortion risk measures are extensively used in finance and insurance applications because of their appealing properties. We present three methods to construct new class of distortion functions and measures. The approach involves the composting methods, the mixing methods and the approach that based on the theory of copula. Subadditivity is an important property when aggregating risks in order to preserve the benefits of diversification. However, Value at risk (VaR), as the most well-known example of distortion risk measure is not always globally subadditive, except of elliptically distributed risks. In this paper, instead of study subadditivity we investigate the tail subadditivity for VaR and other distortion risk measures. In particular, we demonstrate that VaR is tail subadditive for the case where the support of risk is bounded. Various examples are also presented to illustrate the results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)