Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Reverse Pinsker Inequalities (1503.07118v4)

Published 24 Mar 2015 in cs.IT, math.IT, and math.PR

Abstract: New upper bounds on the relative entropy are derived as a function of the total variation distance. One bound refines an inequality by Verd\'{u} for general probability measures. A second bound improves the tightness of an inequality by Csisz\'{a}r and Talata for arbitrary probability measures that are defined on a common finite set. The latter result is further extended, for probability measures on a finite set, leading to an upper bound on the R\'{e}nyi divergence of an arbitrary non-negative order (including $\infty$) as a function of the total variation distance. Another lower bound by Verd\'{u} on the total variation distance, expressed in terms of the distribution of the relative information, is tightened and it is attained under some conditions. The effect of these improvements is exemplified.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Igal Sason (46 papers)
Citations (35)

Summary

We haven't generated a summary for this paper yet.