Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Video Analysis Based on a Spatiotemporal Saliency Detector (1503.06917v1)

Published 24 Mar 2015 in cs.CV

Abstract: Visual saliency, which predicts regions in the field of view that draw the most visual attention, has attracted a lot of interest from researchers. It has already been used in several vision tasks, e.g., image classification, object detection, foreground segmentation. Recently, the spectrum analysis based visual saliency approach has attracted a lot of interest due to its simplicity and good performance, where the phase information of the image is used to construct the saliency map. In this paper, we propose a new approach for detecting spatiotemporal visual saliency based on the phase spectrum of the videos, which is easy to implement and computationally efficient. With the proposed algorithm, we also study how the spatiotemporal saliency can be used in two important vision task, abnormality detection and spatiotemporal interest point detection. The proposed algorithm is evaluated on several commonly used datasets with comparison to the state-of-art methods from the literature. The experiments demonstrate the effectiveness of the proposed approach to spatiotemporal visual saliency detection and its application to the above vision tasks

Citations (4)

Summary

We haven't generated a summary for this paper yet.