Quantum Phase Transitions Between a Class of Symmetry Protected Topological States (1503.06794v2)
Abstract: The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension $d$ and symmetry group $G$ so that the cohomology group, $H{d+1}(G,U(1))$, contains at least one $Z_{2n}$ or $Z$ factor. We show that the phase transition between the trivial SPT and the root states that generate the $ Z_{2n} $ or $Z$ groups can be induced on the boundary of a d+1 dimensional $G\times Z_2T$-symmetric SPT by a $Z_2T$ symmetry breaking field. Moreover we show these boundary phase transitions can be "transplanted" to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.