Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Concentration of Regression Trees, with Application to Random Forests

Published 22 Mar 2015 in math.ST, stat.ML, and stat.TH | (1503.06388v3)

Abstract: We study the convergence of the predictive surface of regression trees and forests. To support our analysis we introduce a notion of adaptive concentration for regression trees. This approach breaks tree training into a model selection phase in which we pick the tree splits, followed by a model fitting phase where we find the best regression model consistent with these splits. We then show that the fitted regression tree concentrates around the optimal predictor with the same splits: as d and n get large, the discrepancy is with high probability bounded on the order of sqrt(log(d) log(n)/k) uniformly over the whole regression surface, where d is the dimension of the feature space, n is the number of training examples, and k is the minimum leaf size for each tree. We also provide rate-matching lower bounds for this adaptive concentration statement. From a practical perspective, our result enables us to prove consistency results for adaptively grown forests in high dimensions, and to carry out valid post-selection inference in the sense of Berk et al. [2013] for subgroups defined by tree leaves.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.