Papers
Topics
Authors
Recent
2000 character limit reached

A Monte Carlo Simulation Approach for Quantitatively Evaluating Keyboard Layouts for Gesture Input

Published 21 Mar 2015 in cs.HC | (1503.06300v2)

Abstract: Gesture typing is a method of text entry that is ergonomically well-suited to the form factor of touchscreen devices and allows for much faster input than tapping each letter individually. The QWERTY keyboard was, however, not designed with gesture input in mind and its particular layout results in a high frequency of gesture recognition errors. In this paper, we describe a new approach to quantifying the frequency of gesture input recognition errors through the use of modeling and simulating realistically imperfect user input. We introduce new methodologies for modeling randomized gesture inputs, efficiently reconstructing words from gestures on arbitrary keyboard layouts, and using these in conjunction with a frequency weighted lexicon to perform Monte Carlo evaluations of keyboard error rates or any other arbitrary metric. An open source framework, Dodona, is also provided that allows for these techniques to be easily employed and customized in the evaluation of a wide spectrum of possible keyboards and input methods. Finally, we perform an optimization procedure over permutations of the QWERTY keyboard to demonstrate the effectiveness of this approach and describe ways that future analyses can build upon these results.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.