Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimal complexity of equidistributed infinite permutations (1503.06188v3)

Published 20 Mar 2015 in math.CO, cs.DM, and math.DS

Abstract: An infinite permutation is a linear ordering of the set of natural numbers. An infinite permutation can be defined by a sequence of real numbers where only the order of elements is taken into account. In the paper we investigate a new class of {\it equidistributed} infinite permutations, that is, infinite permutations which can be defined by equidistributed sequences. Similarly to infinite words, a complexity $p(n)$ of an infinite permutation is defined as a function counting the number of its subpermutations of length $n$. For infinite words, a classical result of Morse and Hedlund, 1938, states that if the complexity of an infinite word satisfies $p(n) \leq n$ for some $n$, then the word is ultimately periodic. Hence minimal complexity of aperiodic words is equal to $n+1$, and words with such complexity are called Sturmian. For infinite permutations this does not hold: There exist aperiodic permutations with complexity functions growing arbitrarily slowly, and hence there are no permutations of minimal complexity. We show that, unlike for permutations in general, the minimal complexity of an equidistributed permutation $\alpha$ is $p_{\alpha}(n)=n$. The class of equidistributed permutations of minimal complexity coincides with the class of so-called Sturmian permutations, directly related to Sturmian words.

Citations (4)

Summary

We haven't generated a summary for this paper yet.