Papers
Topics
Authors
Recent
Search
2000 character limit reached

DSpot: Test Amplification for Automatic Assessment of Computational Diversity

Published 19 Mar 2015 in cs.SE | (1503.05807v2)

Abstract: Context: Computational diversity, i.e., the presence of a set of programs that all perform compatible services but that exhibit behavioral differences under certain conditions, is essential for fault tolerance and security. Objective: We aim at proposing an approach for automatically assessing the presence of computational diversity. In this work, computationally diverse variants are defined as (i) sharing the same API, (ii) behaving the same according to an input-output based specification (a test-suite) and (iii) exhibiting observable differences when they run outside the specified input space. Method: Our technique relies on test amplification. We propose source code transformations on test cases to explore the input domain and systematically sense the observation domain. We quantify computational diversity as the dissimilarity between observations on inputs that are outside the specified domain. Results: We run our experiments on 472 variants of 7 classes from open-source, large and thoroughly tested Java classes. Our test amplification multiplies by ten the number of input points in the test suite and is effective at detecting software diversity. Conclusion: The key insights of this study are: the systematic exploration of the observable output space of a class provides new insights about its degree of encapsulation; the behavioral diversity that we observe originates from areas of the code that are characterized by their flexibility (caching, checking, formatting, etc.).

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.