Papers
Topics
Authors
Recent
Search
2000 character limit reached

Minimum spanning acycle and lifetime of persistent homology in the Linial-Meshulam process

Published 19 Mar 2015 in math.PR, math.AT, and math.CO | (1503.05669v1)

Abstract: This paper studies a higher dimensional generalization of Frieze's $\zeta(3)$-limit theorem in the Erd\"os-R\'enyi graph process. Frieze's theorem states that the expected weight of the minimum spanning tree converges to $\zeta(3)$ as the number of vertices goes to infinity. In this paper, we study the $d$-Linial-Meshulam process as a model for random simplicial complexes, where $d=1$ corresponds to the Erd\"os-R\'enyi graph process. First, we define spanning acycles as a higher dimensional analogue of spanning trees, and connect its minimum weight to persistent homology. Then, our main result shows that the expected weight of the minimum spanning acycle behaves in $O(n{d-1})$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.