Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A "bottom up" characterization of smooth Deligne-Mumford stacks (1503.05478v1)

Published 18 Mar 2015 in math.AG

Abstract: In casual discussion, a stack is often described as a variety (the coarse space) together with stabilizer groups attached to some of its subvarieties. However, this description does not uniquely specify the stack. Our main result shows that for a large class of stacks one typically encounters, this description does indeed characterize them. Moreover, we prove that each such stack can be described in terms of two simple procedures applied iteratively to its coarse space: canonical stack constructions and root stack constructions. More precisely, if $\mathcal X$ is a smooth separated tame Deligne-Mumford stack of finite type over a field $k$ with trivial generic stabilizer, it is completely determined by its coarse space $X$ and the ramification divisor (on $X$) of the coarse space morphism $\pi\colon \mathcal X \to X$. Therefore, to specify such a stack, it is enough to specify a variety and the orders of the stabilizers of codimension 1 points. The group structures, as well as the stabilizer groups of higher codimension points, are then determined.

Summary

We haven't generated a summary for this paper yet.