Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic and partial differential equations on non-smooth time-dependent domains

Published 18 Mar 2015 in math.AP | (1503.05433v3)

Abstract: In this article, we consider non-smooth time-dependent domains and single-valued, smoothly varying directions of reflection at the boundary. In this setting, we first prove existence and uniqueness of strong solutions to stochastic differential equations with oblique reflection. Secondly, we prove, using the theory of viscosity solutions, a comparison principle for fully nonlinear second-order parabolic partial differential equations with oblique derivative boundary conditions. As a consequence, we obtain uniqueness, and, by barrier construction and Perron's method, we also conclude existence of viscosity solutions. Our results generalize two articles by Dupuis and Ishii to time-dependent domains.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.