Papers
Topics
Authors
Recent
Search
2000 character limit reached

Stochastic maximum principle for optimal control of a class of nonlinear SPDEs with dissipative drift

Published 17 Mar 2015 in math.PR and math.OC | (1503.04989v1)

Abstract: We prove a version of the stochastic maximum principle, in the sense of Pontryagin, for the finite horizon optimal control of a stochastic partial differential equation driven by an infinite dimensional additive noise. In particular we treat the case in which the non-linear term is of Nemytskii type, dissipative and with polynomial growth. The performance functional to be optimized is fairly general and may depend on point evaluation of the controlled equation. The results can be applied to a large class of non-linear parabolic equations such as reaction-diffusion equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.