Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimum Degree up to Local Complementation: Bounds, Parameterized Complexity, and Exact Algorithms (1503.04702v2)

Published 16 Mar 2015 in cs.DM, math.CO, and quant-ph

Abstract: The local minimum degree of a graph is the minimum degree that can be reached by means of local complementation. For any n, there exist graphs of order n which have a local minimum degree at least 0.189n, or at least 0.110n when restricted to bipartite graphs. Regarding the upper bound, we show that for any graph of order n, its local minimum degree is at most 3n/8+o(n) and n/4+o(n) for bipartite graphs, improving the known n/2 upper bound. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term). The local minimum degree problem is NP-Complete and hard to approximate. We show that this problem, even when restricted to bipartite graphs, is in W[2] and FPT-equivalent to the EvenSet problem, which W[1]-hardness is a long standing open question. Finally, we show that the local minimum degree is computed by a O*(1.938n)-algorithm, and a O*(1.466n)-algorithm for the bipartite graphs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.