Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthogonal polynomial projection error measured in Sobolev norms in the unit disk (1503.04485v2)

Published 15 Mar 2015 in math.NA

Abstract: We study approximation properties of weighted $L2$-orthogonal projectors onto the space of polynomials of degree less than or equal to $N$ on the unit disk where the weight is of the generalized Gegenbauer form $x \mapsto (1-|x|2)\alpha$. The approximation properties are measured in Sobolev-type norms involving canonical weak derivatives, all measured in the same weighted $L2$ norm. Our basic tool consists in the analysis of orthogonal expansions with respect to Zernike polynomials. The sharpness of the main result is proved in some cases and otherwise strongly hinted at by reported numerical tests. A number of auxiliary results of independent interest are obtained including some properties of the uniformly and non-uniformly weighted Sobolev spaces involved, a Markov-type inequality, connection coefficients between Zernike polynomials and relations between the Fourier-Zernike expansions of a function and its derivatives.

Summary

We haven't generated a summary for this paper yet.