Yamabe Classification and Prescribed Scalar Curvature in the Asymptotically Euclidean Setting
Abstract: We prove a necessary and sufficient condition for an asymptotically Euclidean manifold to be conformally related to one with specified nonpositive scalar curvature: the zero set of the desired scalar curvature must have a positive Yamabe invariant, as defined in the article. We show additionally how the sign of the Yamabe invariant of a measurable set can be computed from the sign of certain generalized "weighted" eigenvalues of the conformal Laplacian. Using the prescribed scalar curvature result we give a characterization of the Yamabe classes of asymptotically Euclidean manifolds. We also show that the Yamabe class of an asymptotically Euclidean manifold is the same as the Yamabe class of its conformal compactification.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.