Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal Cuts of Sparse Random Graphs (1503.03923v2)

Published 13 Mar 2015 in math.PR, cs.DM, and math.CO

Abstract: For Erd\H{o}s-R\'enyi random graphs with average degree $\gamma$, and uniformly random $\gamma$-regular graph on $n$ vertices, we prove that with high probability the size of both the Max-Cut and maximum bisection are $n\Big(\frac{\gamma}{4} + {{\sf P}}* \sqrt{\frac{\gamma}{4}} + o(\sqrt{\gamma})\Big) + o(n)$ while the size of the minimum bisection is $n\Big(\frac{\gamma}{4}-{{\sf P}}\sqrt{\frac{\gamma}{4}} + o(\sqrt{\gamma})\Big) + o(n)$. Our derivation relates the free energy of the anti-ferromagnetic Ising model on such graphs to that of the Sherrington-Kirkpatrick model, with ${{\sf P}}_ \approx 0.7632$ standing for the ground state energy of the latter, expressed analytically via Parisi's formula.

Citations (110)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com