Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Composition operators on Hilbert spaces of entire functions with analytic symbols (1503.03692v4)

Published 12 Mar 2015 in math.FA

Abstract: Composition operators with analytic symbols on some reproducing kernel Hilbert spaces of entire functions on a complex Hilbert space are studied. The questions of their boundedness, seminormality and positivity are investigated. It is proved that if such an operator is bounded, then its symbol is a polynomial of degree at most 1, i.e., it is an affine mapping. Fock's type model for composition operators with linear symbols is established. As a consequence, explicit formulas for their polar decomposition, Aluthge transform and powers with positive real exponents are provided. The theorem of Carswell, MacCluer and Schuster is generalized to the case of Segal-Bargmann spaces of infinite order. Some related questions are also discussed.

Summary

We haven't generated a summary for this paper yet.