2000 character limit reached
Note on super congruences modulo $p^2$ (1503.03418v1)
Published 11 Mar 2015 in math.NT and math.CO
Abstract: Let $p$ be an odd prime, and let $m$ be an integer with $p\nmid m$. In this paper show that $$\sum_{k=0}{p-1}\frac{\binom{2k}k\binom ak\binom{-1-a}k}{mk} \equiv 0\pmod p \quad\hbox{implies}\quad\sum_{k=0}{p-1}\frac{\binom{2k}k\binom ak \binom{-1-a}k}{mk}\equiv 0\pmod {p2}.$$